Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis.
نویسندگان
چکیده
To assess the role of increased cytosolic free calcium (Caf) in the pathogenesis of acute proximal tubule cell injury and the protection afforded by exposure to reduced medium pH or treatment with glycine, fura-2-loaded tubules were studied in suspension and singly in a superfusion system. The Ca2+ ionophore, ionomycin, increased Caf to micromolar levels and rapidly produced lethal cell injury as indicated by loss of lactate dehydrogenase to the medium by suspended tubules and accelerated leak of fura and failure to exclude Trypan blue by superfused tubules. Decreasing medium Ca2+ to 100 nM prevented the ionomycin-induced increases of Caf and the injury. Reducing medium pH from 7.4 to 6.9 or adding 2 mM glycine to the medium also prevented the cell death, but did not prevent the increase of Caf to micromolar levels. Cells treated with 1799, an uncoupler of oxidative phosphorylation which produced severe adenosine triphosphate (ATP) depletion, did not develop increases of Caf until just before loss of viability. Preventing these increases of Caf with 100 nM Ca2+ medium did not protect 1799-treated cells. Reduced pH and glycine protected 1799-treated cells without ameliorating the increases of Caf. These data demonstrate the toxic potential of increased Caf in the proximal tubule and show that Caf does sharply increase prior to loss of viability in an ATP depletion model of injury, but this increase does not necessarily contribute to the outcome. The potent protective actions of decreased pH and glycine allow the cells to sustain increases of Caf to micromolar levels in spite of severe, accompanying cellular ATP depletion without developing lethal cell injury.
منابع مشابه
Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury.
The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury a...
متن کاملMaleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death.
Maleate injection causes dose-dependent injury in proximal tubular cells. This study sought to better define underlying pathogenic mechanisms and to test whether maleate toxicity recapitulates critical components of the hypoxic/ischemic renal injury cascade. CD-1 mice were injected with maleate or used as a source for proximal tubule segments (PTS) for in vitro studies. Maleate induced dose-dep...
متن کاملCytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules.
Previous studies have shown that cytosolic-free Ca2+ (Caf) increases to at least low micromolar concentrations during ATP depletion of isolated kidney proximal tubules. However, peak levels could not be determined precisely with the Ca2+-sensitive fluorophore, fura-2, because of its high affinity for Ca2+. Now, we have used two low affinity Ca2+ fluorophores, mag-fura-2 (furaptra) and fura-2FF,...
متن کاملProximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia
Renal ischemia-reperfusion injury is a major cause of acute kidney injury. We previously found that renal A(1) adenosine receptor (A(1)AR) activation attenuated multiple cell death pathways including necrosis, apoptosis, and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1-phosphate (S1P) synthesis might be the mechanism of protection...
متن کاملRole of PKC and calcium in modulation of effects of angiotensin II on sodium transport in proximal tubule.
It has been well documented that low concentrations of ANG II (10(-11) to 10(-10) M) stimulate, whereas high concentrations of ANG II (10(-8) to 10(-5) M) inhibit Na(+) transport in proximal tubules of rat and rabbit kidneys. Measured ANG II concentration in proximal tubular fluid is in the nanomolar range. In the present study, we investigated the role of PKC, intracellular Ca(2+), and cAMP in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 87 2 شماره
صفحات -
تاریخ انتشار 1991